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Manifold-preserving algorithms for multiscale kinetic 
simulations
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➤High-fidelity simulation of kinetic multiscale problems require solving the 
kinetic transport equation, e.g.:
➫ Boltzmann (rarefied gas dynamics, radiation transport)
➫ Vlasov-Fokker-Planck (collisional plasmas)

➤Numerical challenges of kinetic descriptions are many:
➫ High dimensional (3D+3V+time), highly nonlinear, exceeding multiscale
➫ Cannot afford to run fully resolved in time or space, even with most powerful 

supercomputers
➫ Need to constrain numerical errors as much as possible

➤Manifold-preserving discrete algorithms control numerical error by 
preserving constraints and asymptotic properties of the continuum 
problem, e.g., conservation laws. They facilitate:
➫ Asymptotic well-posedness
➫ Discrete model nesting (e.g., Boltzmann → Navier-Stokes → Euler)
➫ Avoiding long-term manifold drift [O(1) errors!]

➤Implicit timestepping is needed for efficiency.
➫ Model-nesting can be effectively used for algorithmic acceleration (e.g., moment-

based acceleration, aka High-Order/Low-Order, micro-macro, etc).
➤We have applied these ideas to rarefied gases, radiation, and plasmas.
➤We will focus on plasmas throughout this talk.



First-principles simulation of plasmas: 
The Vlasov-Fokker-Planck-Maxwell system
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➤A fully ionized plasma: soup of ions, electrons, coupled by EM fields
➤Probability distribution function !" described by Vlasov-Fokker-Planck eq.

coupled with Maxwell equations (or Darwin, ES, etc):

➤Manifold constraints: positivity of !", strict conservation of charge (mass), 
momentum, and energy, H-theorem

➤Very rich manifold asymptotics: quasineutrality, ambipolarity, multi-fluid, 
resistive MHD, ideal MHD

First-principles governing equations: Vlasov-Maxwell equations

‰ Vlasov Equation (3D3V)
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‰ Various asymptotic approximations to Maxwell eqs. are possible: Darwin model, electrostatic
model, etc.
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Challenges of first-principles kinetic plasma 
simulations
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➤High dimensionality (3D+3V+time), nonlinear, exceedingly multiscale

➤Goal: integrate electron-ion-field kinetic system on engineering time 
and length scales while capturing kinetic effects. 
➫ Need asymptotic-preserving implicit methods, adaptivity in phase space, strict 

conservation properties

Challenges of first-principles kinetic plasma simulations

‰ A fully ionized collisionless plasma: ions, electrons, and electromagnetic fields
‰ Challenge: integrate electron-ion-field kinetic system on an ion time-scale and a system length

scale while retaining electron kinetic effects accurately.

‰ We are developing a new implicit algorithm for long-term, system-scale simulations.
Î How to design a multiscale algorithm? (Efficiency)
Î How to respect conservation laws and constraints? (Accuracy)

Luis Chacon, chacon@lanl.gov



Manifold-preserving implicit Lagrangian (PIC) methods 
for collisionless plasmas
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Vlasov-Maxwell equation for collisionless plasmas
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➤Vlasov equation

coupled with Maxwell equations

where:

➤Vlasov equation is a singular limit of VFP
➫ Features an infinite number of invariants (any function of !")
➫ However, only mass, momentum, and energy survive with arbitrarily infrequent 

collisions

First-principles governing equations: Vlasov-Maxwell equations

‰ Vlasov Equation (3D3V)
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Lagrangian (particle-in-cell, PIC) discretization of the 
Vlasov-Maxwell system

2/21/19 |   9Los Alamos National Laboratory

Particle-in-cell (PIC) methods for collisionless kinetic plasma
simulation

‰ Lagrangian solution by the method of characteristics:
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‰ PIC approach follows characteristics employing macroparticles (volumes in phase space)
‰ Maxwell’s equations are usually solved by finite-difference time-domain methods.
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Classical PIC algorithm is explicit (i.e., not multiscale, 
not conservative)

2/21/19 |   10Los Alamos National Laboratory

State-of-the-art classical PIC algorithm is explicit

‰ Classical explicit PIC: “leap-frogs” particle positions and velocities, field-solve at position update:

‰ Implementation is straightforward, but...
‰ Performance limitations:

Î CFL-type instability: min(w
pe

Dt < 1, cDt < Dx). Minimum temporal resolution
Î Finite-grid instability: Dx < l

Debye

. Minimum spatial resolution
Î Memory bounded: challenging for efficient use of modern computer architectures.

‰ Accuracy limitations:
Î Lack of energy conservation, problematic for long-time-scale simulations

‰ To remove the stability/accuracy constraints of explicit methods, we consider implicit methods.

Luis Chacon, chacon@lanl.gov



What about implicit PIC?
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➤Exploration of implicit PIC started in the 1980s
➫ Implicit moment method1

➫ Direct implicit method2

➤Early approaches used linearized, semi-implicit formulations: 
➫ Lack of nonlinear convergence 
➫ Particle orbit accuracy (particle and fields integrated in lock-step)
➫ Inconsistencies between particles and moments
➫ Inaccuracies! → Plasma self-heating/cooling3

➤Our approach: nonlinear implicit PIC 
➫ Enforcing nonlinear convergence; consistency between particles, moments, and fields.
➫ Ensuring exact global energy conservation and local charge conservation properties. 
➫ Allowing adaptivity in both time and space without loss of the conservation properties.
➫ Allowing moment-based preconditioning to accelerate the iterative kinetic solver!

1. Mason, R. J. (1981), Brackbill, J. U., and Forslund, D. W. (1982)
2. Friedman, A., Langdon, A. B. and Cohen, B. I.(1981)
3. Cohen, B. I., Langdon, A. B., Hewett, D. W., and Procassini, R. J. (1989)



Fully implicit PIC: 1D electrostatic PIC 
Chen et al, JCP 2011, 2012, 2013; Taitano et al, SISC (2013)



Fully implicit 1D electrostatic PIC formulation
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Fully implicit 1D electrostatic PIC formulation

‰ A fully implicit formulation couples particles and fields non-trivially (integro-differential PDE):
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Î There are N

p
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g
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‰ If implemented naively, an impractically large algebraic system of equations results:
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Î No current computing mainframe can afford the memory requirements
Î Algorithmic issues are showstoppers (e.g., how to precondition it?)

‰ An alternative strategy exists: nonlinear elimination (particle enslavement)

Luis Chacon, chacon@lanl.gov



Particle enslavement (nonlinear elimination)
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Particle enslavement (nonlinear elimination)

‰ Full residual F({x, v}
p

, {F}
g

) = 0 is impractical to implement
‰ Alternative: nonlinearly eliminate particle quantities so that they are not dependent

variables:
Î Formally, particle equations of motion are functionals of the electrostatic potential:
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Nonlinear residual can be unambiguously formulated in terms of electrostatic potential only!

‰ Nonlinear solver storage requirements are dramatically decreased, making it tractable:
Î Nonlinear solver storage requirements µ N

g

, comparable to a fluid simulation
Î Particle quantities ) auxiliary variables: only a single copy of particle population

needs to be maintained in memory throughout the nonlinear iteration

Luis Chacon, chacon@lanl.gov



Nonlinear solver: Jacobian-free Newton-Krylov
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Nonlinear solver technology: Anderson Acceleration vs JFNK

‰ After spatial and temporal discretization ) a large set of nonlinear equations: F(x

n+1) = 0

‰ Converging nonlinear couplings requires iteration
‰ We begin with Newton’s linearization:
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‰ Jacobian matrix inversion requires a linear solver ) Krylov subspace methods (GMRES)
Î Only require matrix-vector products to proceed.
Î Jacobian-vector product can be computed Jacobian-free (CRITICAL: no need to form
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We will explore moment-based preconditioning strategies later in this talk.
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An important detail: Vlasov-Poisson vs. Vlasov-Ampere
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1D electrostatic field equation: Vlasov-Poisson vs. Vlasov-Ampere

‰ Two equivalent formulations are possible:

1D Vlasov-Poisson (VP) 1D Vlasov-Ampère (VA)

∂
t

f + v∂
x

f +
qE

m

∂
v

f = 0

∂
x

E =
r

e
0

E = �∂
x

F

∂
t

f + v∂
x

f +
qE

m

∂
v

f = 0

e
0

∂
t

E + j = hji

Two systems are equivalent in continuum, but not in the discrete.
‰ Conventionally used in explicit PIC.
‰ Exact local charge conservation.
‰ Exact global momentum conservation.
‰ Unstable with orbit averaging in implicit

context [Cohen and Freis, 1982].

‰ Exact local charge conservation.
‰ Exact global energy conservation.
‰ Suitable for orbit averaging.
‰ Can be extended to electromagnetic sys-

tem in multi-D.

‰ We consider Vlasov-Ampere to derive discrete conservative formulation.

Luis Chacon, chacon@lanl.gov



Details of enslaved nonlinear residual evaluation
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Details of residual evaluation

‰ The nonlinear residual formulation F(E

n+1) based on Vlasov-Ampere formulation is as follows:
1. Input E (given by JFNK iterative method)
2. Move particles (i.e., find x

p

[E], v

p

[E] by solving equations of motion)
(a) Requires inner (local) nonlinear iteration: Picard (not stiff)
(b) Can be as complicated as we desire (substepping, adaptivity, etc)

3. Compute moments (current)
4. Form Vlasov-Ampere equation residual
5. return

‰ Full implicitness enables exact global energy conservation! (CRITICAL)
‰ Because particle move is performed within function evaluation, we have much freedom.
‰ We can explore improvements in particle mover to ensure long-term accuracy!

Î Multi-rate integrators (ensures orbit accuracy)
Î Exact charge conservation strategy (a new charge-conserving particle mover)

Luis Chacon, chacon@lanl.gov



Fully implicit discretization: Exact energy conservation
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Fully implicit discretization: Exact energy conservation

‰ Fully implicit Crank-Nicolson time discretization:
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Î No CFL condition.
Î Robust against finite-grid instabilities
Î Requires that particles and fields are nonlinearly converged.
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Multirate particle integrator: Exact charge conservation
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Multirate particle integrator: Exact charge conservation

‰ Multi-rate particle integrator: field time-scale Dt � orbit time-scale Dt

Accurate orbit integration requires particle sub-stepping!

‰ Local charge conservation ∂
t

r +r · j = 0 is essential to ensure long-term accuracy.
Î Derived independently from both Vlasov and Maxwell equations: “glues” them together.

‰ B-spline interpolation ensures charge conservation within cell boundaries; broken when particles
cross cell boundaries.
Î Standard strategy based on current redistribution when particle crosses boundary.4

Î Current redistribution breaks energy conservation. Need a new strategy.
‰ Particles stop at cell boundaries ) exact charge conservation for B-splines with order2
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4Buneman 1968, Morse and Nielson, 1971

Luis Chacon, chacon@lanl.gov



Multirate particle integrator: Recover energy conservation
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Multirate particle integrator: Recover energy conservation

‰ Particle substepping breaks energy conservation.
‰ Energy conservation theorem can be recovered by orbit averaging Ampère’s law:
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[Cohen and Freis, 1982]



Ion acoustic standing wave:
Accuracy impact of manifold preservation
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Accuracy impact of the multirate particle mover
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Fully implicit vs. semi-implicit PIC5

5Taitano et al., SISC, 35 (2013)
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Ion acoustic shock wave:
Accuracy impact of manifold preservation
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Ion acoustic shock wave:
Long-term accuracy on non-uniform mapped meshes
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Non-uniform meshes: Ion acoustic shock wave
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Moment-based preconditioning
Chen et al, JCP 2014; CPC 2014, 2015



CPU gain potential of implicit PIC vs explicit PIC
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CPU gain potential of implicit PIC vs. explicit PIC

‰ Back-of-the-envelope estimate of CPU gain:
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Moment-based acceleration of fully kinetic algorithm
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Moment-based acceleration of fully kinetic simulations

‰ Particle elimination ) nonlinear residual is formulated in terms of fields/moments ONLY: F(E)

‰ Within JFNK, preconditioner ONLY needs to provide field/moment update:

dE ⇡ �P

�1

F

Premise of acceleration: obtain dE from a fluid model using current
particle distribution for closure.

‰ We posit a fluid nonlinear model:

∂
t

na = �r · Ga

ma


∂

t

Ga +r · ( 1

na
GaGa)

�
= qanaE +r ·
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✓
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Moment-based acceleration of fully kinetic alg. (cont.)
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Moment-based acceleration of fully kinetic simulations (cont.)

‰ We formulate approximate linearized fluid equations (neglect linear temperature response):

dna

Dt

= �r · dGa

ma
dGa

Dt

⇡ qa(dna E + na,p

dE) +r ·
0

@
✓

Pa

na

◆

p

dna

1

A

e
0

dE = Dt

"

Â
a

qadGa � F(E)

#

dE can be obtained from Newton state E, Newton residual F(E), and
particle closures Pa,p

and na,p
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Moment preconditioner performance
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Preconditioner performance: CPU scaling
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Extension to multi-D electromagnetic PIC:
conservation properties (2D Weibel)
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2D Weibel instability
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Extension to multi-D electromagnetic PIC:
Preconditioner performance (2D Weibel)
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2D Electron Weibel instability: preconditioner performance
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Manifold-preserving adaptive, implicit Eulerian
methods for collisional plasmas
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Motivation: Inertial Confinement Fusion (ICF)



Motivation: Kinetic effects in ICF are important

hydrodynamics code DUED
14) with increasing Knudsen num-

ber indicated the influence of ion kinetic effects. In agree-
ment with this picture, another recent study by Le Pape et al.
shows that in a high-density, low-temperature, short-mean-
free-path, (NK ! 1) indirect-drive exploding pusher implo-
sion, hydrodynamic codes are able to reproduce with high fi-
delity the experimental results.15 In concert, these studies
indicate that the ion-ion mean free path and the Knudsen
number are strong determinants of the applicability of hydro-
dynamic models.

To further investigate whether the trends observed in
these prior experiments apply generally, under quite different
experimental conditions (larger capsules, asymmetric illumi-
nation, and oblate implosions), data were obtained on polar-
direct-drive (PDD)16 exploding pusher shots at the NIF that
were conducted for diagnostic development and calibra-
tion.17–19 In addition, given the scarcity of NIF shots for
non-programmatic purposes, it is important to cull as much
information and physics insight possible from these diagnos-
tic development shots. These experiments produced copious
DD and D3He reactions, allowing for characterization of the
implosions through measurement of two separate fusion
yields, two different burn-averaged ion temperatures, fuel
qR in D2 implosions and total qR in both D2 and D3He
implosions, x-ray images of the imploding shell and core,
and x-ray and nuclear bang-times. This study employs 2D
DRACO radiation-hydrodynamics simulations20 for compari-
son to experimental data. As in prior work,12 the experimen-
tally inferred ion-ion mean free path kii / T2

i =niZ4 (where Ti

is the ion temperature, ni is the ion density, and Z is the ion
charge), averaged over mean free paths calculated separately
for different ion species in D3He implosions,21 is compared
to the minimum shell radius Rshell to describe the degree of
ion kinetic behavior. It is observed that the fusion yield rela-
tive to DRACO predictions varies inversely with the experi-
mentally determined NK, suggesting that ion kinetic effects
are beginning to degrade implosion performance. In Sec. IV,
it is discussed that hydrodynamic mix does not account for
these trends. As shown in Figure 1, it is evident that these
results strongly match the findings of the previous experi-
ments, which are presented together for guidance. The entire
range of exploding pusher data shown in Figure 1 spans three
orders of magnitude, between regimes of very low (10"2)
and very high (10) Knudsen numbers. While the OMEGA
direct-drive experiments were conducted in a comprehen-
sive, systematic way,12 the experiments described in this
work, conducted in a ride-along mode, produced a somewhat
more complex set of data. However, in concert, these differ-
ent experimental campaigns show how the discrepancy rela-
tive to hydrodynamic codes with increasing Knudsen
number begins to be observed.

This paper is organized as follows: the experiments and
models used for comparison to experimental data are
described in Sec. II; experimental and some modeled results
are shown in Sec. III; a discussion of the findings is pre-
sented in Sec. IV, with evidence of ion kinetic effects illus-
trated in Figure 8; and concluding remarks are presented in
Sec. V.

II. EXPERIMENTS AND MODELING

Exploding-pusher implosions at the NIF23 were con-
ducted with #192 laser beams pointed in the polar direct
drive configuration,16 delivering 40–130 kJ onto a capsule in
a 1.4- or 2.0-ns ramp pulse. The experiments used 2.2 g/cm3

SiO2 shells with a 1530–1680 lm diameter and a thickness
of 4.1–4.6 lm, filled with 10 to 12 atm of D2, D3He, or
HD3He gas. Experimental parameters are summarized in
Table I.

The primary nuclear reactions used to diagnose the
exploding-pusher implosions are

Dþ D!3Heð0:82 MeVÞ þ nð2:45 MeVÞ; (1)

Dþ D! Tð1:01 MeVÞ þ pð3:02 MeVÞ; (2)

Dþ3He! að3:6 MeVÞ þ pð14:7 MeVÞ: (3)

In D2 gas-filled implosions, 3He fusion products (see Eq. (1))
react with the thermal D fuel ions via the secondary reaction

FIG. 1. DD YOC as a function of the Knudsen number (NK) for an indirect-
drive exploding pusher on NIF (red diamond),15 three PDD exploding
pushers on NIF described in this work for which optimal DRACO simulations
(including non-local electron transport and/or cross-beam energy transfer,
see Sec. II) were performed, from left to right, shots N121128, N130129,
and N120328 (black circles), and direct-drive exploding pushers on
OMEGA (green circles).12 Filled markers represent D3He-filled implosions,
while open markers denote D2-filled implosions. Though the drive condi-
tions are quite different, these experiments show a unified picture of the
increasing impact of ion kinetic effects as a function of increasing Knudsen
number above NK ! 0.1. A band centered around NK¼ 0.5 shows the ap-
proximate Knudsen number at the center of a NIF ignition-relevant indirect-
drive or a NIF polar-direct-drive implosion immediately after shock conver-
gence, while a band centered around NK¼ 2 shows the approximate
Knudsen number after shock convergence at the center of a cryogenic lay-
ered implosion on OMEGA.22

TABLE I. Capsule and laser parameters for exploding pushers used in this
study, including: capsule outer diameter d; shell thickness Dr; total laser energy;
approximate laser pulse duration; D2 fill pressure; and 3He fill pressure.

NIF d Dr Energy Pulse D2 fill 3He fill

Shot # (lm) (lm) (kJ) (ps) (atm) (atm)

N100823 1567 4.1 80.0 #2100 1.4 10.5a

N110131 1555 4.5 52.0 #2100 10.0

N110722 1536 4.1 42.7 #1400 3.3 5.3

N120328 1555 4.4 130.6 #2100 9.9

N121128 1682 4.3 43.4 #1400 3.3 5.8

N130129 1533 4.6 51.4 #1400 10.0

aCapsule also contained 5.3 atm H2.

122712-2 Rosenberg et al. Phys. Plasmas 21, 122712 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
204.121.6.216 On: Tue, 31 Mar 2015 13:44:28

From Rosenberg et al., PoP, 21 (2014) 
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High-fidelity ICF simulations require a kinetic treatment

➤ Vlasov-Fokker-Planck (Rosenbluth form; equivalent to Landau form) is 
the model of choice for weakly coupled plasmas

➤ VFP manifold: positivity, conservation of charge, momentum, and 
energy, H-theorem (entropy increases or stays constant)

Dfi
Dt

⌘ @fi
@t

+ ~v ·rfi + ~ai ·rvfi =
X

j

Cij (fi, fj)

Cij (fi, fj) = �ijrv · [ Dj ·rvfi �
mi

mj
Ajfi ]

r2
vHj (~v) = �8⇡fj (~v)

r2
vGj (~v) = Hj (~v)

Dj = rvrvGj Aj = rvHj

+ Maxwell’s equations…
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The iFP Vlasov-Fokker-Planck code
Taitano et al, JCP 2015, 2016, 2017, 2018



A multiscale VFP solver for ICF applications

➤Consider 1D-2V geometries (planar, spherical symmetry)
➤Consider suitable asymptotic limits for Maxwell equations:
➫ Electrostatic approximation (exact in 1D spherical, b ~ 103-104 in Omega)
➫ Quasineutrality: r = 0
➫ Ambipolarity: j = 0 (in 1D)
➫ Eliminates plasma frequency, Debye length, and charge separation effects 

(this is OK for our timescales)
➤Consider fluid electrons:
➫ Rigorous model, including thermal and friction forces (Simakov et al, PoP

2014)
➫ Massless electrons (regular limit)
➫ Eliminates non-local heat transport effects (drawback)
➫ Interim approximation (ambipolarity can be imposed with kinetic e)

➤Ions remain fully kinetic, allow for multiple species
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Model equations:
fully kinetic ions + fluid electrons

Vlasov-Fokker-Planck
for ion species

Fluid electrons
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Simakov and Molvig, PoP 21 (2014)



Algorithmic innovations of iFP

➤ Fully nonlinearly time-implicit (Δt >> τcol)
➫ Iterate solution to convergence
➫ Based on a nested-model HOLO solver, with optimal multigrid 

preconditioning
➤ Optimal, adaptive grid in phase space

➫ Velocity space: normalize to thermal velocity and shift w/r/t flow velocity 
per ion species

➫ Radial coordinate: Moving mesh partial differential equation (MMPDE)
➤ Fully conservative (mass, momentum, and energy)
➫ Mesh motion in phase space built into model analytically, and then 

discretized (no remapping)
➫ Enslavement of error in conservation symmetry into discretization
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These strategies save > 14 orders of magnitude in computational complexity 
vs. “brute-force” algorithms (e.g. static uniform grid + explicit time-integration)



ICF adaptive meshing VFP needs

➤Disparate temperatures during 
implosion dictate velocity 
resolution.
➫ vth,max determines Lv

➫ vth,min determines Δv

v

x

Under-resolved

cold distribution

Resolved hot

distribution

v
th
,h
o
t

v
th
,c
o
ld

• Shock width and capsule 
size dictate physical space 
resolution
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Brute-force VFP algorithms (uniform mesh, 
explicit timestepping) are impractical for ICF

➤Mesh requirements:
➫ Intra species vth,max /vth,min~100
➫ Inter species (vth,α /vth,β)max~30
➫Nv~ [10(vth,max/vth,min)x(vth,α /vth,β)]2 ~109

➫Nr ~ 103-104

➫N=NrNv~1012-1013 unknowns in 1D2V!

➤Timestep requirements:
➫ tsim=10 ns 
➫Nt=1010 time steps

➤Beyond exascale (1018 FLOPS)!
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Adaptive mesh with implicit timestepping makes 
problem tractable

➤Mesh requirements:
➫v-space adaptivity with vth normalization and u|| shift, Nv~104-105

➫Moving mesh in physical space, Nr~102

➫Second-order accurate phase-space discretization
➫N=NvNr~106~107 (vs. 1012 with static mesh)

➤Timestep requirements:
➫Optimal O(Nv) implicit nonlinear algorithms [Chacon, JCP, 157

(2000), Taitano et al., JCP, 297 (2015)]
➫Second-order-accurate timestepping
➫Δtimp=Δtstr~10-3 ns
➫Nt~103-104 (vs. 1010 with explicit methods)

➤Terascale-ready! (1012 FLOPS, any reasonable 
cluster)
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vth adaptivity provides an enabling capability to 
simulate ICF plasmas

➤D-e-α, 3 species thermalization
problem

➤Resolution with static grid:

➤Resolution with adaptivity and 
asymptotics: 

➤Mesh savings of 

Nv ⇠ 2

✓
vth,e,1
vth,D,0

◆2

= 140000⇥ 70000

Nv = 128⇥ 64

⇠ 106
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Manifold preservation is critical!

Without energy conservationWith energy conservation
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Implicit solver is very efficient, algorithmically and 
in parallel

Nv
104 105

C
PU

 [s
ec

]

104

106

108

Implicitprec
O(Nv)
Explicit
O(N2

v)
4 orders of 
magnitude more 
efficient than 
explicit methods 
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Algorithm achieves design accuracy 
(2nd order in phase space and temporally)

370 W.T. Taitano et al. / Journal of Computational Physics 297 (2015) 357–380

Fig. 5. Single species in thermal equilibrium: Comparison of temperature evolution with and without discretely conservative formulation.

Fig. 6. Single species in thermal equilibrium: Numerical entropy production as a function of grid resolution.

Fig. 7. Single species in thermal equilibrium: Demonstration of second-order convergence of the velocity-space discretization scheme.

energy conservation leads to numerical cooling, as can be appreciated in Fig. 5, which shows the temporal evolution of the 

temperature, T = m
3

〈∣∣v⃗−u⃗
∣∣2

, f
〉

v⃗
⟨1, f ⟩v⃗

.
Fig. 6 depicts the total entropy production in the system with the conservative scheme as a function of grid size for this 

test problem, demonstrating that the entropy increases with time during relaxation to the numerical Maxwellian, and that 
entropy error decreases with grid refinement. To demonstrate the order of accuracy of the velocity-space discretization, we 
compute the L2-norm of the difference between the steady-state solution and the Maxwellian distribution function,

L!v
2 =

√〈
f j,k − f M, j,k, f j,k − f M, j,k

〉
v⃗ ,

for various mesh sizes !v , and the result is shown in Fig. 7. Second-order convergence is seen with the method with 
a slight degradation for coarser meshes. This is due to the SMART and the MC tensor-diffusion limiters, which resort to 
first-order discretizations to preserve positivity.

The impact of the preconditioning step on the overall conservation properties of the algorithm is demonstrated in Fig. 8. 
These tests have been performed with and without preconditioning with a small time-step size for a short time period. As 
is clearly demonstrated, without preconditioning, conservation in all quantities is enforced to numerical round-off. Precon-

W.T. Taitano et al. / Journal of Computational Physics 297 (2015) 357–380 375

Fig. 15. Two-species thermal equilibration: Conservation properties and entropy as a function of time and nonlinear tolerance. The apparently sharp evolu-
tion of some of these quantities early in time (in contrast with the relatively slow evolution of the temperature equilibration in the previous figure) is an 
artifact of the use of logarithmic units in the ordinates.

Fig. 16. Two-species thermal equilibration: Demonstration of second-order convergence of the BDF2 scheme.

improvement in the number of iterations for !t = 10−1 with Nv = 512 × 256. It is also seen that, with preconditioning, 
the solver performance is quite insensitive to !t except for the case of !t = 1, which steps over the dynamical time-scale 
of the problem, ταβ = 0.5. Fig. 17 shows the total CPU time of the second-order BDF2 implicit solver vs. a second-order 
Runge–Kutta explicit solver [54], as a function of the problem size Nv for !t = 10−1 and tmax = 10!t . Given the large cost 
of the explicit solver, the explicit CPU time in this figure is estimated by extrapolation from the cost of a single step as:

CPUexp,tot = 10!t
!texp

× CPUexp,avg,

where CPUexp,avg is the average (over 100 time steps) CPU time per time-step for the explicit solver. As can be seen, the 
multigrid-preconditioned fully implicit solver scales optimally as O(Nv ), while the explicit solver CPU time scales as O

(
N2

v
)
, 

as expected. A speedup of four orders of magnitude of implicit vs. our simple explicit implementation is demonstrated for 
the finest mesh considered (1024×512). The coefficient of the scaling law for the explicit algorithm can be reduced by clever 
algorithmic strategies (see e.g. [42]), but the exponent cannot, and reflects a fundamental limitation of explicit approaches.

2/21/19 |   52Los Alamos National Laboratory



2/21/19 |   53Los Alamos National Laboratory

Phase-space mesh adaptivity strategy
Taitano et al, JCP 2016, 2017, 2018



1D-2V Rosenbluth-VFP model:
Adaptive velocity-space mesh

➤V-space adaptivity allows optimal mesh resolution throughout the domain
➤Analytical transformation introduces inertial terms
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Here, Q||,e is the parallel electron-heat flux, n

e

is the electron density, T

e

is the electron temperature, u||,e is the
parallel electron fluid velocity, W

ea

describes the electron-ion energy exchange, and the detailed theoretical
and numerical treatment can be found in [23] and [16], respectively.

The electron-ion collision operator C

ae

in Eq. (2.6) is given by:

C

ae

= G
ae

—
v

·


$
D

ae

·—
v

f

a

� m

a

m

e

A

ae

f

a

�

, (2.8)

where we adopt the reduced ion-electron potentials [24] (for the full details on the numerics of ensuring
conservation, refer to Ref. [16]).

3. Coordinate Transformation of the Vlasov-Fokker-Planck and fluid-electron equations

We consider the transformation of all velocity-space quantities for a species a to a normalization speed,
v

⇤
a

(x, t), and offset velocity u

⇤
||,a (x, t) (related to their thermal speed and bulk flow velocity, respectively),

as follows:
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and the collision operator are discussed in Ref. [21] and that the translation velocity does not alter the
general procedure. We note that, as v
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u

⇤
||,a the local u||,a for a given plasma

species (elaborated in Sec. 5.6), the grid will expand (contract) as the plasma heats (cools), and translates
as the plasma accelerates/decelerates. For an ilustrative depiction of this process, refer to Fig. 3.1. In the
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Figure 3.1: Illustration of the velocity space adaptivity.
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Representation and analytical coordinate 
transformation for vth adaptive meshing

1D spherical (with logical mesh); 2D cylindrical geometry in velocity space624 CHACÓN ET AL.

FIG. 1. Diagram of the local cylindrical velocity coordinate system (vr , vp) considered in this work. Cylin-
drical symmetry is assumed. The spherical radius vector r is included for reference.

by-product, the required numerical representation of the subordinate problems for H and
G, which will be somewhat different from the traditional treatment.

3.1. Definition of the Computational Velocity Domain

So far, the discussionhas been independent of a particular geometry and/or dimensionality
in velocity space. To focus the discussion that follows, a 2D cylindrical velocity space with
angular symmetry is adopted. This space is spanned by (vr , vp), where vr is the cylindrical
z-axis, and vp is the cylindrical r -axis (Fig. 1), and vr ∈ [0, vlimit]; vp ∈ [0, vlimit]. Here, vlimit
is typically set to several times the characteristics velocity of the problem, v0.
The domain is discretized with an integer mesh and a half mesh (Fig. 2). The integer

mesh is defined using Nr (+1) nodes in the vr axis, and Np(+1) nodes in the vp axis, with
the constraints

vr,1 = 0, vr,Nr = vlimit

vp,1 = 0, vp,Np = vlimit.

Each velocity node is characterized by a pair (vr,i , vp, j ), with i = 1, . . . , Nr (+1), and
j = 1, . . . , Np(+1). The additional (i = Nr + 1, j) and (i, j = Np + 1) nodes at the bound-
aries will serve a double purpose: (1) they will be used to impose the far-field boundary
conditions for the Rosenbluth potentials, and (2) they will allow an accurate determina-
tion of the friction and diffusion coefficients of the Fokker–Planck collision operator at the

FIG. 2. Diagram of the 9-point stencil in velocity space employed in the discretization of the Fokker–Planck
collision operator.

Coordinate 
transformation:

Jacobian of 
transformation:

Always fixed

Ẋ = dr/dt (mesh speed)
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Coordinate transformation introduces inertial terms

➤VRFP equation in transformed coordinates
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Collision operator:
Asymptotic treatment of interspecies collisions
Taitano et al, JCP 2016



Interspecies collisions present challenges with 
species-centric mesh adaption
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➤ Adaptivity using vth requires solving the interspecies collision problem: 
one needs to compute the potentials for species b on the mesh of 
species a

➤This transfer can be problematic:
➫ Accuracy issues (when species have disparate thermal velocities)
➫ Efficiency issues: work scales as number of species squared O(Ns

2)
➤Asymptotic treatment solves both issues

Ĥ↵� = H�

v3th,�
v2th,↵

Ĝ↵� = G�

v3th,�
v4th,↵

bC↵� =
�↵�

v3th,�
brv↵ ·


brv↵

brv↵
bG↵� · brv↵

bf↵ � m↵

m�

bf↵ brv↵
bH↵�

�

br2
v↵

bH↵� = �8⇡ bf�
✓
bv� = bv↵

vth,↵
vth,�

◆
br2
v↵

bG↵� = bH↵�



Cold species
essentially a delta
function on hot
species' mesh

Hot

Cold Cold

Hot

Hot species' mesh
is too coarse for
interpolation on
cold species' mesh

Asymptotic Formulation of Interspecies Collisions

vf/vth,s >> 1 vs/vth,f << 1 
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vth adaptivity provides an enabling capability to 
simulate ICF plasmas

➤D-e-α, 3 species thermalization
problem

➤Resolution with static grid:

➤Resolution with adaptivity and 
asymptotics: 

➤Mesh savings of 

Nv ⇠ 2

✓
vth,e,1
vth,D,0

◆2

= 140000⇥ 70000

Nv = 128⇥ 64

⇠ 106
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Collision operator:
Conservation and positivity
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2V Rosenbluth-FP collision operator:
conservation symmetries

➤Conservation properties of FP collision operator result from 
symmetries:

and

br2
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4
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4

. (2.5.8)

Introducing these terms in the collision operator, and noting that the normalized collision operator is:

bC↵� = v3th,↵C↵� , (2.5.9)

we find:
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The above expression is obtained with: br2

v
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.

2.6 Treatment of Rosenbluth Potentials between Cross Species
Velocity Space

2.7 Conservative Discretization

We develop a mass, momentum, and energy conserving discretization for the Fokker-Planck operator.

2.7.1 Discrete Mass Conservation Scheme

First, recall the continuum mass conservation statement,

h1, C↵�iv =
D

1,rv ·
h
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iE
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E

v
. (2.7.1)

Here, the surface integral requires the evaluation of the collisional fluxes at the velocity boundaries to be
zero. In the discrete, we do the exactly identical treatment by numerically setting the fluxes to zero at the
boundary.

2.7.2 Discrete Momentum Conservation Scheme

For momentum conservation, the following relation must hold:

m↵ h~v, C↵�i~v = �m� h~v, C�↵i~v . (2.7.2)
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2V Rosenbluth-FP collision operator:
numerical conservation of energy

➤The symmetry to enforce is:

➤Due to discretization error:

➤We introduce a constraint coefficient such that:

➤Discretization is nonlinear, and ensures that, numerically:

➤Similarly for momentum. Idea extends to Vlasov equation as well.

D
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2V Rosenbluth-FP collision operator:
numerical preservation of positivity

➤RFP collision operator is an advection-(tensor) diffusion 
operator in velocity space

➤Use SMART [1] for advection
➫ High-order advection when possible

➫ Reverts to upwinding otherwise

➫ Monotonic, positivity preserving

➫ Suitable for implicit timestepping

➤Use limited tensor diffusion [2,3] for tensor diffusion component
➫ Maximum-principle preserving

➫ Compatible with nonlinear iterative solvers
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1. Gaskell & Law, 1988

2. Lipnikov et al., 2012

3. Du Toit et al., 2018 



Verification: thermalization of initial random distribution
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NOTE: 
This is 
the lab 

color 
palette. 

Single-species initial random distribution: 
Thermalization to a Maxwellian 
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Single-species random distribution:
Conservation properties

time
0 0.01 0.02 0.03 0.04 0.05

∆
M

10-16

10-14

10-12

10-10

10-8

10-6

ϵr=10
-2

ϵr=10
-4

ϵr=10
-6

time
0 0.01 0.02 0.03 0.04 0.05

∆
I

10-12

10-10

10-8

10-6

10-4

10-2

ϵr=10
-2

ϵr=10
-4

ϵr=10
-6

time
0 0.01 0.02 0.03 0.04 0.05

∆
U

10-15

10-10

10-5

100

ϵr=10
-2

ϵr=10
-4

ϵr=10
-6

time
0 0.01 0.02 0.03 0.04 0.05

∆
S

10-2

10-1

100

101

ϵr=10
-2

ϵr=10
-4

ϵr=10
-6

Figure 5.9: Single-species random distribution: The distribution function for the random initial distribution case at t=0 (left),

t = 2⇥ 10�4
(middle), and t = 5⇥ 10�2

(right) time.
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Figure 5.10: Single-species random distribution: The quality of positivity as a function of time for various values of nonlinear

tolerance ✏r and time-stepping approach (BDF2, left, and BDF1, right). Temporal locations without values indicate strict

positivity.

20

Positivity preservation
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Moment-based (High-Order/Low-Order) nonlinear 
solver acceleration strategy



Nested-model solver uses the moment equation to 
efficiently deal with the integral nonlinearity
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➤Kinetic (HO) equation (microscopic physics):

➤Hydrodynamic (LO) equations (macroscopic physics; evolve the 
Maxwellian collision kernel):

➤These systems are solved coupled using an accelerated Picard iteration 
(e.g., Anderson Acceleration)

➤HOLO algorithm effectively linearizes the HO component, but without 
approximation upon nonlinear convergence
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LO system accelerates the convergence of the HO system

2/21/19 |   85Los Alamos National Laboratory

LO System
(deals with all the stiff, 

nonlinear, integral physics)

HO System
(linearized system)

nLO, ~uLO, TLO, ~E

⌧̄HO, ~QHO, �HO
col



HOLO can efficiently deal with stiff integral nonlinearity
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➤HOLO is simply a convergence 
accelerator (i.e., no additional 
approximations)

➤A significant acceleration in convergence 
of nonlinear solver is achieved, without 
changing the solution!



1D-2V Vlasov-Fokker-Planck equation:
Verification and demonstration of long-term accuracy
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Verification test: Relaxation of sinusoidal profile
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Verification: M=5 Shock (kinetic regime)
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Verification: M=5 Shock conservation properties
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Verification: M=1.5 Shock (fluid regime; HARD)
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Application: Exploding pusher ICF capsule implosion



The fuel remains fully kinetic throughout the simulation

2/21/19 |   96Los Alamos National Laboratory



Algorithmic savings in computational complexity
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Simulation takes <24 hours on 400 cores



Conclusions

➤ We have derived manifold-preserving algorithms for kinetic plasma simulation
➫ Collisionless (Lagrangian, particle-in-cell)
➫ Collisional (Eulerian)

➤ Collisionless (PIC): we have solved the 40-year-old algorithmic challenge of 
developing accurate implicit PIC algorithms

➤ Collisional (VFP): we have demonstrated a truly multiscale algorithm that has 
enabled routine simulation of ICF spherical capsule implosions with a few 
hundred cores for a couple of days.

➤ In both cases:
➫ Strict conservation properties have been shown to be critical for long-term accuracy.
➫ Significant algorithmic acceleration has been achieved by using nested asymptotic models.

➤ We have seen similar benefits in other applications:
➫ Rarefied gas dynamics
➫ Radiation transport
➫ Ocean modeling
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